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Abstract

Build systems such as make support incremental and
parallel building, but these features are unreliable in
the presence of incomplete dependency information.
We describe a system that automatically augments any
build system to provide parallel and incremental building
while guaranteeing the same final output as a clean, se-
rial build. Each build task is run inside a transaction that
isolates its effects from concurrently running build tasks,
and the results of build tasks are cached for later reuse.
By dynamically monitoring all filesystem accesses, all
dependencies between build tasks can be reliably identi-
fied. In experiments on three small builds on a quad-core
machine, an initial build using our system took between
70% to 200% as long as a clean, serial build, while an
incremental build (with no files changed) using our sys-
tem took between 14% to 73% as long as a clean, serial
build.

1 Motivation

Large software projects often reach thousands of files
and millions of lines of source code. Build automation
systems, or build systems for short, are responsible for
automating the execution of build tools such as compil-
ers in order to process all the source code and produce
the final, executable output. The time required to execute
a build is a critical factor in a number of software engi-
neering metrics such as: developer cycle time, frequency
of continuous integration testing, throughput of check-in
verification systems, and time to ship a critical patch. Yet
a 2003 survey showed that more than half of the 30 sur-
veyed commercial projects had a clean, sequential build
time of 5-10 hours. [13] This motivates the development
of builds that can run faster than a clean build.

∗This paper was submitted in December 2010 as a class report for
CS 262a, taught by Prof. Eric Brewer at the University of California,
Berkeley, in Fall 2010. This is not a peer-reviewed work.

To address this need, many existing build systems pro-
vide two features: parallel builds, in which multiple
build tasks are executed simultaneously, and incremental
builds, in which results of previous builds are reused and
only a subset of build tasks are run, based on what build
inputs have changed. In both types of builds, the devel-
oper must explicitly specify dependencies for each build
task, describing other build tasks which must run before
it. For example, in a C project, C source files must be
compiled into object files before the object files can be
linked into an executable binary. If even one dependency
is omitted, the soundness of both parallel and incremen-
tal builds is compromised: build tasks may be run out
of order, leading to incorrect reuse of out-of-date results,
build failure due to missing results, and race conditions
due to concurrent access to files. Whether a failure oc-
curs, and which failure occurs, depends on which input
files have changed and the build schedule selected by the
build system. As a consequence, “[m]ost organizations
run their builds completely sequentially or with only a
small speedup, in order to keep the process as reliable as
possible.” [13]

Incomplete dependencies arise naturally whenever a
developer change introduces a new dependency, but fails
to correctly update the dependency information in the
build system. As a simple example, consider the build
described by this makefile:

all: generated.h foo

generated.h: config
./gen config -o generated.h

foo: foo.c
gcc foo.c -o foo

Here, a tool called gen is run to generate the header file
generated.h from a file config; then the binary foo is com-
piled from the C source file foo.c. Now suppose the de-
veloper modified foo.c to include the header file gener-
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ated.h, and also modified config. A serial build will still
produce the expected result, since generated.h is listed
before foo in the “all” target, but an incremental or paral-
lel build may run the gcc action before, or simultaneously
with, the gen action, leading to incorrect output or build
failure.

Another problematic scenario is when a large build is
formed by composing a number of existing builds for
various components; we call this the composition prob-
lem. One component’s build may depend on the output
of another component’s build, but coarse-grained depen-
dencies between components do not expose enough par-
allelism. Achieving fine-grained parallelism generally
requires merging component build systems into a single
unified build system, which could be a costly endeavor.

2 Goal

Our goal is to create a build manager tool that can be
deployed in any existing build environment with little to
no configuration or migration cost, and provides parallel,
incremental builds that are guaranteed to be correct and
reliable. In particular, it should produce correct results
even in the presence of incomplete or missing dependen-
cies.

More carefully defining this goal requires us to define
what we mean by “correct”. In general, the specification
of a correct build depends on developer intentions and
is not tractable to infer. Instead, we seek a specification
that is easy for a developer to create and debug, without
additional training. The most obvious such specification
is that a correct build should produce the same output
as a clean, serial build. Because clean, serial builds are
procedural, they are easy for developers to understand;
because they are deterministic and repeatable, issues are
easy to reproduce and fix. This implies of course that
in order to be of benefit, our system should build more
quickly than a clean, serial build.

3 Our solution

To motivate our solution, we consider an example build.
Suppose that the clean, serial build consists of running
three tasks, foo, bar, and baz, in that order. Each task
reads and writes a series of files. We begin by optimisti-
cally executing all three tasks concurrently. The read and
write operations are executed in some serial order in real
time, expressed by the circled numbers in Figure 1.

The first two reads, labelled 1 and 2, should read the
initial versions of the files that were present before the
build started; these might be input files, for example.
Next, bar writes to C, and both foo and baz read C; foo

Virtual
time

foo

1 read A

5 read C

6 write B

bar

2 read B

3 write C

7 abort

baz

4 read C

8 abort

Figure 1: Example build demonstrating abort and cas-
cading abort.

should see the initial version of C, while baz should see
the version written by bar.

Next, foo writes to B. Because bar occurs later in the
clean, serial build, it should have read the version of B
written by foo, but instead read the initial version, poten-
tially resulting in incorrect behavior. To cope with this,
we will abort the task bar, undoing all of its effects. In
particular, this undoes the write to C which was already
read by baz. Because bar influenced the behavior of baz,
baz must also be aborted (cascading abort). Finally, bar
and baz are restarted and bar will read the correct version
of B.

The concurrency control described above is based on
multiversion timestamp concurrency control. [1] In stan-
dard terminology, the tasks above are being run inside a
transaction, and an ordering of events that causes some
transaction to read the wrong version is termed physi-
cally unrealizable behavior. We assign virtual times to
transactions based on the position at which they occur in
the clean, serial build. This guarantees that if they com-
plete without aborting, the result will be equivalent to
that of the clean, serial build, as desired. The most impor-
tant difference is that traditional timestamp concurrency
control is only concerned with obtaining a result equiva-
lent to some serial order, whereas we are concerned with
enforcing a particular serial order. This is why in the
event of a conflict, standard timestamp concurrency con-
trol aborts the writer, whereas we abort the reader (if the
writer were restarted with the same timestamp, the same
conflict would re-occur).

To cope with the need for different processes to see
different versions of the same file, each transaction is
run inside a virtual filesystem in which it sees the effects
of transactions with earlier (or the same) virtual times-
tamps, but not transactions with later virtual timestamps.
The initial virtual filesystem is based on the real under-
lying filesystem, allowing input files to be read.
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3.1 Incremental builds

To implement incremental builds, we dynamically record
for each transaction all actions performed in the virtual
filesystem by that transaction and their results. For ex-
ample, if a transaction reads a file, we will record the file
contents that were made accessible to it at that time; if
a transaction writes a file, we will record the data writ-
ten; if a transaction tests for a file’s existence, we record
whether it exists at that time; and so on. This information
is stored in a persistent cache. Later, if the same build
task is re-run, we will replay all of its virtual filesystem
actions. If at any point the result of an action disagrees
with the results returned before, for example because the
contents of a file it read has changed, it is a cache miss. In
this case, any changes made during replay are discarded
and the process is run normally. If the replay completes
without any disagreement, it is a cache hit; the changes
made during the replay are retained and the process is not
run. This scheme is flexible enough to cope with a wide
variety of filesystem actions, while remaining conceptu-
ally simple.

A build task is identified by its command-line and en-
vironment, so a single task may have many distinct cache
entries. If there are multiple entries, they are all evalu-
ated as above, and the first to produce a hit is used. En-
tries are never removed from the cache, but in practice it
may be useful to prune cache entries that are not likely
to be reused.

Reuse of results across builds is used to achieve in-
cremental builds. As described in section 3.5, reuse of
results during a single build is also essential for imple-
menting hierarchical tasks.

3.2 Pessimistic concurrency control using
action intervals

The concurrency control described so far is purely opti-
mistic. It leads to unacceptably slow behavior due to a
large number of restarts, and it does not take advantage
of known information about dependencies. To deal with
this we introduce the concept of action intervals: each
action issued to the transaction manager is replaced by a
“begin” and an “end” pair, one issued some time before
the transaction performs the action and one issued some
time afterwards. If a transaction has issued a “begin” but
not an “end” for a particular action, that action is said to
be outstanding.

Whenever a transaction issues a “begin” for an action,
we check to see whether that action would conflict with
any outstanding action (cause an abort). If so, the trans-
action issuing the “begin” is suspended until this is no
longer the case. See Figure 2 for an example.

To implement pessimistic concurrency control using

Virtual
time

Real
time

foo

read A

bar

write A

baz

read A

..
.

read A

Figure 2: Example demonstrating pessimistic concur-
rency control using action intervals. The intervals next
to an action denote the “begin” and “end” of the action.
The read on A by baz falls within the action interval of
the write on A by bar, and causes baz to be suspended
till the end of the interval. However, foo isn’t suspended
since it occurs before bar in virtual time.

this mechanism, at the beginning of each process we
make a prediction about what actions that process will
take, and speculatively issue a “begin” for each of them.
The prediction need not be either complete or correct,
and can be based on several sources, including:

• Actions performed by a build tool run with the same
command line in the past. The cache used for incre-
mental building already tracks all the information
needed to do this. We call this an approximate cache
hit.

• Dependency information obtained by parsing build
configuration files, such as makefiles.

• Dependency information extracted by application-
specific tools such as “gcc –M”.

In addition to enabling pessimistic concurrency con-
trol, action intervals allow multiple similar actions —
such as reads or writes to the same file — to be con-
solidated, improving performance. It suffices to issue a
“begin” when a file is opened and an “end” when it is
closed.

3.3 Extended transaction actions
The basic timestamp concurrency control of [1] supports
only reads and writes. While sufficient in theory, in prac-
tice, the use of such a limited action set effectively elimi-
nates any opportunity for parallelism due to two common
scenarios.

The first scenario is that most builds create or delete
many files in the same directory. Creating or deleting
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Virtual
time

foo

3 update dir D
(add file A)

bar

1 update dir D
(add file B)

baz

2 read dir D

4 abort

Figure 3: Example build demonstrating update directory
action; baz is aborted but bar is not.

a file causes an update to the directory; it is important
to track these updates, because a later task may wish to
enumerate the contents of the directory. Unfortunately, if
this update is implemented as a read followed by a write,
no two processes that create or delete files in the same
directory can run concurrently without aborting.

To overcome this issue, we define a new update direc-
tory action which adds or removes a single file from a di-
rectory, as shown in Figure 3. Update-update pairs can be
executed out of order, but update-read pairs cannot; un-
like writes, updates do not follow the Thomas write rule
[16] (i.e. they cannot mask one another’s effects). At the
time a directory is read, we combine all relevant updates
to obtain the result. Additional actions are issued for the
file itself, so that any conflict over adding/removing the
same file is still detected.

The second scenario is similar and involves the use
of log files and/or the standard output. If all or most
build actions append to some common stream, and this
is treated as a read followed by a write, opportunities for
parallelism will be lost. Instead, we define an append ac-
tion. Appends can be exchanged with one another (since
they are write-only) but not with reads. At the time of a
read, all relevant appends are concatenated to obtain the
result.

Rather than treating these new actions as special cases,
we generalized the concept of read-write conflicts and
the Thomas write rule to a conflict matrix and a mask
matrix, analogous to the use of matrices in describing
conflicts in locking (see e.g. [4]). In the conflict matrix,
the entry in row i, column j is set to 1 if and only if per-
forming action i at a later real time but earlier virtual time
than action j, on the same file, leads to a physically un-
realizable behavior (for example, the entry (write, read)
would be set to 1). In the mask matrix, the entry in row i,
column j is set to 1 if and only if action j masks or hides
the effects of an action i occurring earlier in virtual time
on the same file (e.g. (write,write) would be 1). Figure 4
shows our complete matrices.

Conflict matrix

R W E C D U A
R 0 0 0 0 0 0 0
W 1 0 0 0 0 × 0
E 0 0 0 0 0 0 0
C 0 0 1 0 0 0 0
D × × 1 0 0 × ×
U 1 × 0 0 0 0 ×
A 1 0 0 0 0 × 0

Mask matrix

R W E C D U A
R 1 1 1 1 1 1 1
W 0 1 0 0 1 × 0
E 1 1 1 1 1 1 1
C 1 1 0 1 1 1 1
D × × 0 1 1 × ×
U 0 × 0 0 1 0 0
A 0 1 0 0 1 0 0

Figure 4: Conflict and mask matrices, where R, W, E, C,
D, U, A denote read, write, exists, create, delete, update
directory, and append, respectively. Read and write can
only be performed on existing files; create and delete cre-
ate/delete a file or do nothing if it already does/does not
exist. Read-only actions have no effects, so their effects
are masked vacuously by any action. Irrelevant values
are marked with an ×.

3.4 Implementation

Our primary focus was on make-based builds, for which
each build task is run in a separate process and commu-
nication between tasks is via the filesystem, command-
line arguments, and the environment. This isolation
makes it relatively easy to dynamically trace dependen-
cies through system call interception using ptrace. We
run a clean, serial build using make, but trace all system
calls it makes and any processes it forks. By modifying
the system call number and return value, we can selec-
tively emulate a subset of system calls ourselves. In par-
ticular, we emulate wait4() so that any attempt by make
to wait on a child is skipped. This effectively creates
parallelism between tasks without the need to parse the
build description file (e.g. in our case, the makefile).

In the event of an abort, we kill the associated pro-
cess and re-execute it with the same arguments with
which it was started. Additionally, other transactions
may be aborted, as described in section 3.5. By emulat-
ing getppid(), the process cannot observe that it is being
re-executed.

The use of ptrace is also convenient since it allows
us to suspend processes immediately before any system
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call, which is used to implement the pessimistic concur-
rency control described in section 3.2. We issue “begin”
actions before each relevant system call, and (implicitly)
perform all “end” actions when the process terminates.
For pessimistic concurrency control, we also wrote an
application-specific wrapper for gcc to predict, in ad-
vance of being executed, that gcc will create and write
to its output file.

The standard ptrace implementation has high over-
head because it intercepts every system call (both be-
fore and after) and only allows the monitored process’s
memory to be updated a single word at a time. Each of
these events involves a context switch. To increase per-
formance, a number of small kernel modifications were
made: a ptrace option was added allowing all system call
arguments to be retrieved at once; tracing of some system
calls not of interest to us was disabled; and a system call
was added to allow us to open a file on behalf of another
process (the use of this call obviates the need to emulate
read and write calls, which are particularly expensive).
In all, less than 100 lines of code were added.

In our implementation of the incremental build cache,
rather than storing the complete contents of files which
are read, we store only their Fowler-Noll-Vo (FNV) hash
(a hash chosen for its efficiency). [12]

Our ptrace-based implementation is not amenable to
build systems such as Ant, which use class-loading to
load all build tools into a single process. We cannot re-
liably identify which task is performing each file access,
and we have no means of aborting and restarting transac-
tions associated with tasks. However, our method applies
to such systems as well, and could be used, for example,
to construct a drop-in replacement for Ant with relatively
minor modifications.

Alternatives were considered for intercepting opera-
tions. A custom filesystem, as used in Vesta, [7] can effi-
ciently interpose on all file operations; this could be im-
plemented by stacking a new filesystem on top of the ex-
isting one (using a kernel filesystem, a user-mode filesys-
tem, or a network filesystem server) and running build
tools using chroot inside it. However, chroot requires
super-user access, and such a system cannot (by itself)
interpose on the wait4() calls needed to force children to
run in parallel.

Another promising alternative is binary rewriting of
all system calls at load-time using a library, thereby
eliminating frequent context switching by caching some
state in-process and communicating with the monitor via
shared memory only when necessary. A preliminary ap-
make system based on Jockey [14] used this approach,
but was not efficient in practice because typical builds
spawn a large number of very short-lived processes for
operations such as “rm” and “mv”. Even when all the
necessary rewrites are cached, the cost of loading the li-

make1

(1) gcc1

(1, 1) cc11

(1, 1, 1)

gcc2

(1, 2)

make2

(2) ld

(2, 1)

make3

(3)

Figure 5: Example of hierarchical tasks; make spawns
gcc and ld, and gcc spawns cc1. A transaction is assigned
to each process segment, with timestamps (shown below
each segment) in lexicographic order from left to right.

brary alone significantly increased overall build-time. A
hybrid approach may be possible in which ptrace is used
to trace short-lived tasks while binary rewriting is used
to trace long-lived tasks.

3.5 Hierarchical tasks
If the clean, serial build consisted of a simple sequence
of processes being executed in order, it would suffice to
assign a single transaction to each process. However, in
real builds such as those using make, there is a hierarchy
of processes, with child processes spawned by parents.
In such a setting, no assignment of transactions to pro-
cesses yields an ordering matching that of the clean, se-
rial build. Instead, parent processes must be split at each
point where a child process is spawned to form process
segments. If a transaction is assigned to each segment,
these can then be assigned times to match the order of
the clean, serial build. An example is shown in Figure 5.

In the sequence model, each new process is dynami-
cally assigned a fresh virtual timestamp greater than all
those assigned so far. In the case of hierarchical tasks,
timestamps are represented as finite sequences of inte-
gers, ordered lexicographically and beginning with (1).
When a process with timestamp (x1, x2, ...xi) spawns a
new child, the child receives timestamp (x1, x2, ..., xi, 1)
and the new segment of the parent receives timestamp
(x1, x2, ..., xi + 1).

Just as before, when a transaction is aborted and
restarted, it maintains its old timestamp, and as a re-
sult, its position in the transaction tree. Since we restart
processes by re-executing them, individual process seg-
ments cannot be restarted independently. Instead, if
any segment of a process is aborted, all its segments
are aborted, allowing the process to be restarted from
the beginning. When a non-leaf process is aborted and
restarted, it may not spawn the same sequence of chil-
dren, so in order to ensure uniqueness of timestamps, we
must abort (and not restart) all existing descendants of a
transaction before aborting and restarting it.
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make1

gcc

write A

make2

read A

Figure 6: The progress problem with hierarchical tasks.
Suppose make reads A immediately after forking gcc. If
gcc is aborted as soon as make is aborted, then make is
restarted, the same failure will re-occur.

Caching results of hierarchical tasks is problematic,
since the behavior of a later segment of a process may de-
pend on what actions were taken by the process’s descen-
dants. There is also no straightforward way to implement
a cache hit for a process segment (which should cause
the process to “skip” to the next child spawn point). We
instead adopted the approach of caching task subtrees;
the actions of a task and all its descendants are concate-
nated into a single list. If there is later a cache hit for
the task subtree, the full list is replayed, replicating the
entire subtree’s effects without needing to re-execute any
of the processes in that subtree.

In the case where a transaction conflicts with one of
its ancestors in the tree, there is a risk of failing to make
progress, as showin Figure 6. To resolve this, we take
advantage of the cache used for incremental builds by al-
lowing all descendants of a process to terminate before
it is restarted. This ensures that their actions will be en-
tered in the cache and are available for reuse during the
current build. In the example in the figure, the results
of gcc would be cached, and after make is restarted, gcc
would produce a cache hit, and so its write to A would
occur immediately upon being spawned, eliminating the
opportunity for a conflict.

4 Experiments

In our experiments, our primary goal was to determine
the benefit our system could provide compared to a clean,
serial build using make. Secondary goals include: mea-
suring scalability with the size of the build, measur-
ing scalability with the number of processors, measur-
ing how fast apmake performs a clean, serial build (a
measure of overhead), and measuring performance com-
pared to parallel or incremental builds using standard
build tools (“the price of safety”).

Experiments were performed on an Intel Core i7-
720QM 1.60 GHz quad core hyperthreaded CPU with
8 GB of RAM and 6 MB of L3 cache. Our primary
test case was CircleMUD,[3] a 41,000-line C-based mul-
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Figure 7: Performance of initial (non-incremental) Cir-
cleMUD test build under both clean, serial make and un-
der apmake, as the number of processors is varied using
the maxcpus kernel option. All values are averages of 3
trials. Average standard deviation for make and apmake
were 0.32 and 0.85 sec, respectively.

tiplayer game server (version 3.1). Its build consists
merely of compiling and linking a number of binaries
from C source files. Figure 7 shows our relative advan-
tage to a clean, serial build on this test case during the ini-
tial (non-incremental) build. Our tool has no knowledge
about the dependencies during this build. Cost is high on
a single processor due to the overhead of ptrace monitor-
ing, process restarts, and other factors. Additionally, the
apmake monitor process, which must serially process all
events of all processes, is a bottleneck, leading to limited
scalability. The average number of restarts per build in
the 8 processor case was 7.3.

In incremental builds on 8 processors in which no files
were changed, apmake required 2.1 sec. An incremental
make build in this case requires < 0.1 sec (but does not
provide the same guarantee of safety). If a single source
file was changed (affecting only a compile step and a link
step), apmake’s time increases to 2.8 sec, while make’s
time increases to 0.98 sec. A clean, parallel build of Cir-
cleMUD using “make -j 8” took 4.8 sec. This is about
twice as fast as the initial run of apmake (but does not
provide the same guarantee of safety).

To test generalization to other code bases, we also
tested apmake on the source code of make itself (version
3.81, about 32000 lines of code) and flex, a lexer genera-
tor tool (version 2.5.35, about 26000 lines of code). For
each test we did a clean, serial build using make, an ini-
tial run of apmake with no knowledge of dependencies,
and an incremental run of apmake with no files changed,
as shown in Figure 8. Performance was slower in the ini-
tial apmake build for make and flex due to the overhead
of apmake (e.g. overhead of ptrace and transaction pro-
cessing). Incremental apmake times were superior to the
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Figure 8: Performance of all tests under clean, serial
make, initial run of apmake, and incremental run of ap-
make with no files changed. All values are averages of 3
trials. Average standard deviation for make, apmake ini-
tial runs, and apmake incremental runs were 0.09, 0.21,
and 0.12 sec, respectively.

clean, serial build in all cases.
When apmake is modified to run the build sequentially

(by obeying all wait4() system calls, but still running on
8 processors), there are no restarts and the time for build-
ing CircleMUD is 24.4 sec. This is better than the time
on a single processor (29.0 sec) but still 67% higher than
the sequential build time. This gives an impression of the
overhead incurred by the monitor.

When more dependency information is available, per-
formance improves. To demonstrate this, we added a
simple build wrapper for gcc which examines its com-
mand line, and if it sees “-o filename” it predicts a write
on that file.

The largest example we attempted to run apmake on
was the Linux kernel with the allnoconfig configuration.
Although we were able to complete a build using ap-
make, undiagnosed errors in the system caused it to pro-
duce an incorrect result, and so results are omitted.

5 Related work

The problem of making incremental builds reliable was
one of the primary goals of Vesta, [7] a configuration
management system created by Compaq research. The
most important mechanism for implementing this is the
runtool cache, which is similar to and formed the ba-
sis for apmake’s cache. Instead of system call intercep-
tion, it detects file accesses by build tasks via a custom
filesystem. Vesta could also cache larger sections of the
build, [8] enabling them to achieve incremental builds
that take time proportional to the size of the changes
rather than the size of the source tree. Vesta also placed

heavy emphasis on repeatable builds, the ability to re-
produce any build and the sources used to build it. How-
ever the additional benefits of Vesta come at a cost: Vesta
requires a custom filesystem, version control, and build
system, and provides no support for migrating from ex-
isting ones. Additionally, the system is built around a
client-server model with a shared cache, which is ef-
fective for large teams but incurs overhead for small
projects. Finally, Vesta provides no support for paral-
lel or distributed building, and would require substantial
design changes to support these.

A more practical, but more limited system that uses
caching to speed up builds is ccache, [17] based on com-
pilercache. [15] It caches results of invocations of stan-
dard compiler tools like gcc, but does not generalize to
other tools.

The problem of automatically parallelizing builds, and
in particular distributing existing builds across clusters
of build servers, was the focus of technology patented
by Electric Cloud, Inc. [13] Like our system, Electric
Cloud optimistically runs build tasks (which they call
jobs) in parallel, and if a conflict is detected the output
of the task is deleted and the task is re-executed. Con-
flicts are used to augment the build configuration file in
subsequent builds, just as we avoid conflicts in subse-
quent builds using data in the cache. Their method of
looking up file versions in response to file reads is also
similar to ours. However Electric Cloud does not use a
cache or support incremental builds, nor is it agnostic to
the choice of build system; it parses the build configura-
tion file to determine the initial dependency graph. The
authors claim Electric Cloud could be used in combina-
tion with Vesta, but Vesta does not explicitly describe de-
pendencies in its build configuration file, so it’s not clear
how this would be done.

Electric Cloud is designed to cope with a number of
issues specific to distributed builds such as efficient dis-
tribution of sources, clock synchronization, and node
failure which can be ignored in a single-node setting.
Although large manycore servers are rapidly becoming
more economical than they were in 2003, distributed
builds remain valuable for very large builds. However, as
was the case for Vesta, the use of build servers is heavy-
weight and impractical for small builds, limiting the abil-
ity to scale down.

Our virtual filesystem implementation, which trans-
parently redirects processes to read and writes files in a
different location without their knowledge, can be com-
pared to file virtualization in Windows Vista. [10] The
primary use of file virtualization is to implement the Vir-
tual Store, part of User Access Control: when a legacy
application attempts to write a file to a location that re-
quires administrator privileges to access, rather than ask
the user to elevate the application’s privilege, the file is
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written at a private location in their user directory. File
virtualization is an operating system feature that does
not require user mode support, but also does not main-
tain multiple versions. A less direct comparison may
also be made to stackable filesystems, which implement
filesystems with additional features (such as, in our case,
versioning and rollback) on top of simpler underlying
filesystems. [6]

Because we use transactions to control and roll back
modifications to a filesystem, a natural question is
whether transactional filesystems [5] could be leveraged
to implement an apmake-like system. If the transactions
are committed in order, it will ensure that physically un-
realizable behavior does not occur. Such an approach
has two important limitations: first, transactions cannot
see effects of earlier transactions that have not yet com-
mitted. Although this helps to avoid cascading abort, it
also makes aborts at commit time likely for any task with
a dependency of earlier tasks. Second, this model cannot
support hierarchical tasks, since unrealizable behavior is
detected only at commit time, at which time all earlier
transactions have already been committed. Therefore if
one process segment is aborted, it may not be possible to
abort earlier process segments.

6 Future work

6.1 Ensuring soundness
In order for our cache subsystem to be sound, it must cap-
ture all possible sources of nondeterminism in a program,
similar to replay systems like ReVirt. [2] We succeed in
capturing many of these, including the results of most
file-related system calls, the contents of “/dev/random”,
and the current directory. Others prove difficult to handle
efficiently and are ignored, including the system time,
network access, reading data through a pipe, reading
shared memory, and CPU performance counters.

Even for ordinary file-related system calls, we were
forced to compromise on soundness in order to achieve
reasonable efficiency, because many system calls return
more information than is typically used by the applica-
tion. For example, the stat() system call returns (among
other things) the inode number, user ID, size, and last ac-
cessed time of a file. Despite this, its most common use
by far is to merely determine whether a file exists. We
treat these calls as exists actions, and fabricate default in-
formation for the remaining fields. This works only as
long as the applications being traced do not use the in-
formation in a meaningful way.

Calls normally used to create effects, such as unlink(),
can be used to read information by examining the re-
turn code (e.g. unlink() returns EISDIR only if the given
path refers to a directory). Many file-related calls can be

used to infer permissions information by checking for an
EACCES return. Mounting and unmounting can affect
interpretation of all paths in the affected subtree. Open-
ing a file for writing on a read-only filesystem should
return an error. We ignore all of these.

The getdents() system call, which reads the contents
of a directory, is also problematic, since reading a direc-
tory conflicts with any update to that directory, even if the
read was (say) only looking for files matching a particu-
lar pattern. The result is that programs that use getdents()
are restarted frequently. Some programs (most notably
make) cache filesystem contents so that they can per-
form common operations without making system calls;
this defeats attempts to analyze dependencies at the sys-
tem call level. Presently we resolve this (unsoundly) by
ignoring conflicts with make.

A promising future direction for coping with many of
these problems is to create a library that provides a nar-
row interface for interacting with the system — that is,
it exposes as little information as possible to the caller.
Examples of calls that might be useful in such a library:

• path exists(path): does a file/directory exist at the
given path? returns no on error

• file size(path): gets size of a file in bytes; returns
zero on error

• unlink(path): unlinks a file if it exists and is a file;
returns no result

• cache(directory): caches the contents of the given
directory; returns no result

• find files(directory, pattern): finds all files in a di-
rectory matching a given pattern

Note that partial functions (such as file size()) are con-
verted into total functions that always produce some
meaningful result. This limits the amount of information
that can be inferred.

Build tools, once ported to use this library, will natu-
rally be more likely to yield cache hits, even in a com-
pletely sound system. The library could interact directly
with the monitor process over IPC, avoiding the need
for system call interception. Additionally, by porting
standard system libraries to run on top of this narrow-
interface layer, we can facilitate gradual migration of
tools.

6.2 Change detection and minimal builds
Although apmake’s incremental builds are faster than
clean, serial builds, they still (like make) require time
proportional to the size of the build in order to scan all
input files looking for changes. To avoid this, two mea-
sures are needed: the ability to cache larger sections of
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the build, such as modules, and the ability to reliably
identify build inputs which have changed since the pre-
vious build (change detection). Change detection is han-
dled by make through timestamps, while Vesta handles
it through version control integration. File notification
systems like dnotify and inotify can track all changes to a
directory, but this faces two difficulties: the notification
service must be running at all times, and these systems
do not scale effectively to tracking the large and dynamic
set of directories accessed by a typical build.

A promising alternative is operating system support
for obtaining comprehensive lists of changes to a volume
during a time interval. Often such a feature is straightfor-
ward to provide as an extension to existing journalling
requirements, and facilitates other applications like ef-
ficient backup. NTFS, for example, provides Change
Journals (also known as USN Journals) for this pur-
pose. [11] We are not aware of an existing build system
that exploits this feature, or of a similar feature for UNIX
filesystems. Similarly, it would be useful if the filesys-
tem were to track a hash of each file’s contents over time.
Such a system could be efficiently implemented, for ex-
ample, using Merkle trees. [9]

The other requirement is to cache larger sections of
the build. Our existing implementation can effectively
cache larger sections of builds that invoke subtasks to
build modules (e.g. systems using recursive make) but
would not be effective for builds in which the task tree
is shallow and has high fan-out. In this case, it may be
useful to automatically identify clusters of tasks that can
be cached as a unit.
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8 Availability
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work can be downloaded with source code under a BSD
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˜dcoetzee/apmake/
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